SCHEDULING PARALLEL JOBS IN A MINI-GRID

Job Scheduling
- Resource allocation in space-time
 - Where to run job?
 - When to run job?
- Job migration
 - Moving entire job to a remote cluster
- Job co-allocation
 - Mapping jobs across cluster boundaries
 - Node resource allocation
 - Network bandwidth contention
- Focus: Investigate these issues with a grid simulator

Job Co-allocation

Initial Findings
- Ideal case
 - Unlimited bandwidth
 - No penalty
 - Lower bound
- Migration only
 - Upper bound
- New Algorithms
- Bandwidth-aware
- Practical

Strict Algorithm Performance

Bandwidth-aware Schedulers
- Inter-cluster bandwidth saturation
- Communication slowdown
- Sensitive to network contention
- Strategy
 - Attempt to allocate resources locally
 - Attempt to migrate entire job
 - Attempt to co-allocate job subject to network load
- Mitigating impact to inter-cluster network saturation

Bandwidth-aware Schedulers

Models
- Communication
 - All-to-all collective communication patterns
 - Bi-iteration bandwidth requirements
- Parallel job execution
 - Computation + communication time
 - Communication time subject to network congestion
- Mini-grid architecture
 - Homogenous clusters
 - Dedicated interconnection network

Strict Algorithm
- Communication model
- Possible job partitions
- Constraint satisfaction
- Optimization
- Requires foreknowledge
- Computationally expensive
- Practical?
- Better algorithms?

Strict Algorithm

Lazy Algorithm Performance

Future Work
- Integrate local cluster policy into scheduling
- Improve job communication model
- Verify saturation model with empirical data
- Extend network to include additional topologies
- Generate more realistic workloads
- Design more intelligent scheduling algorithms
- Create more extensive priority mechanisms
- Implement actual scheduler for our mini-grid

Acknowledgements: This work was supported by the ERC program of the National Science Foundation under Award Number EEC-9731680.