The Impact of Information Availability and Workload Characteristics on the Performance of Job Co-allocation in Multi-clusters

William M. Jones
Assistant Professor
Electrical Engineering Department
United States Naval Academy
Annapolis, Maryland

(previously at Clemson University)

http://www.parl.clemson.edu/beosim
What is a multi-cluster?

- Computational resource
- Geographic co-location
- Dedicated network
- Single domains
- Multiple participants
- Distributed resources
- Hierarchical NW topology
- Job scheduling ...
Parallel Job Scheduling

- Local execution
- Job migration
- Job co-allocation (multi-site)
 - Map across boundaries
 - Sharing resources
 - Network BW contention
 - Can help or hurt
- Some example scenarios ...

![Diagram of parallel job scheduling with clusters and job migration](attachment:parallel_job_scheduling_diagram.png)
Cluster 2
running job
waiting job 2
Cluster 1
running job
waiting job 1
waiting job 1
makespan without co-allocation
waiting job 2
waiting job 1
Time
Cluster 2
Cluster 1
running job
waiting job 1
running job
waiting job 2
waiting job 1
waiting job 2
makespan without co-allocation
makespan with co-allocation
improvement
Time
Cluster 1
Cluster 2

Time
running job
waiting job 1
running job
waiting job 1
makespan without co-allocation
waiting job 2
makespan with co-allocation and no NW congestion
waiting job 2
makespan with co-allocation and some NW congestion
execution slowdown

improvement

waiting job 1
waiting job 2
makespan with co-allocation and extreme NW congestion
makespan without co-allocation
makespan with co-allocation and no NW congestion
waiting job 1
waiting job 2
execution slowdown
waiting job 1
waiting job 2
worse
Intelligent Scheduling

- Co-allocation
- **Global optimization**
- Manage node and network
- Control NW contention
- Improve turnaround time
- Ensure fairness
Contributions

- Introduced dynamic communication models
- Designed several *online* scheduling strategies
- Ensured fairness among participating clusters
- Implemented simulation framework
- Demonstrated significant improvement; HOWEVER,
- Established response to available information
- Illustrated impact of salient workload characteristics
Response to Communication Intensity

Algorithm Comparison, Synthetic Workload

![Graph showing response to communication intensity](image)
Workload Generation

- Arrival distribution
- Run-time distribution
- Size distribution
- Synthetic workload
 - Poisson arrival process
 - Exponential run-times
 - Uniform sizes
 - Simple

- Realistic workload
 - Derived from actual workload traces
 - More complex
 - Tunability?
 - Dependent parameters
 - More realism
 - ...
Workload Model Job Arrivals - Daily Cycle

![Daily Cycle Graph]

Workload Model Job Arrivals - Weekly Cycle

![Weekly Cycle Graph]

Job Run-time Distribution

![Runtime Distribution Graph]

Jobs Size Distribution

![Size Distribution Graph]
Response to Communication Intensity

Algorithm Comparison, Real Workload

PPBW (Mbps) vs. Job turnaround time (sec)

- First-Fit
- B1
- B3
- A1
- Zero Comm. Cost
- Migration Only

Job turnaround time (sec)

PPBW (Mbps)
Remaining Outline

- Impact of information availability
 - Cost-benefit relationship of performing co-allocation
- Response to changes in salient workload characteristics
 - Which characteristics affect co-allocation the most
Information Availability

Synthetic Workload

Realistic Workload

Max improvement possible: 36%
A1 Best: 31%

Max improvement possible: 9%
A1 Best: 8%
Factors that Limit Co-allocation

- Communication intensity
- Limited node fragmentation
- Number of candidate jobs
- Serial or very small jobs
- Periodicity of arrival process
- Comparison to migration only
- Modified workloads
Effect of Arrival Process

Realistic WL w/ Poisson AP (WL A)

Synthetic WL w/ real AP (WL B)

Max improvement possible: 28%
A1 Best: 15%

Max improvement possible: 9%
A1 Best: 8%
Effect of Small Jobs

Realistic WL w/ small jobs removed (WL C)

A1 performance w.r.t. Information Availability

Max improvement possible: 24%
A1 Best: 14%

Realistic WL w/ small jobs removed and Poisson AP (WL D)

A1 performance w.r.t. Information Availability

Max improvement possible: 45%
A1 Best: 27%
Conclusions and Future Work

- Job co-allocation can improve system performance
- Access to job characteristics and link utilizations are necessary
- Control network contention and manage bandwidth as a resource
- Performance highly sensitive to salient workload characteristics
- Address heterogeneous node resources
- View job checkpointing/restart to recover from bad scheduling decision
- Re-implement simulation framework in OpNet and compare results
Questions ?
Multi-cluster Topology

- Star layout
- Ideal “flat” switches
- Single NIC
- Single CPU
- Homogeneous
Parallel Job Model

- Communication-centric
- Computation & Comm.
- Collective communication
 - Local access pattern
 - Global access pattern

Per-Processor Bandwidth

(Node)

Original Execution Time Profile

Local Global

Collective Patterns

Original Execution Time Profile

Local Global

Per-Processor Bandwidth (PPBW)

Local Global

Collective Patterns

Original Execution Time Profile

Local Global

Collective Patterns
Parallel Job Model

Cluster 1

Cluster 2

Cluster 3

Cluster 1

Cluster 2

Cluster 3
Job Co-allocation Model

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Job 1

Job 2

Job 3

Computation

Communication

End event can slide forward or backward in time

Original Execution Time Profile

24
Brief Overview of Previous Research

- Strategies with access to link utilizations only
- Ultimate performance depends on job communication characteristics
- Co-allocation can improve or degrade system performance
- *Scheduler needs communication structure and bandwidth requirements*
- *Determine partition sizes that do not saturate links*
- Guarantees that performance is never worse than migration only
- Controls network contention during increased levels of communication
- Focus on our best scheduler “A1”
Communication Characterization

Processor Bandwidth Decomposition

\[PPBW_j = BW_G + BW_L \]
\[= \rho \cdot PPBW_j + (1 - \rho) \cdot PPBW_j \] (1)

Demand on link \(i \) due to job \(j \)

\[BW^j_i = BW_{Global}^j + BW_{Local}^j \] (2)

\[BW^j_i = \left(\frac{BW_G}{Deg_G} \right) \cdot EC_G + \left(\frac{BW_L}{Deg_L} \right) \cdot EC_L \] (3)

\[BW_{Global}^j = \left(n^j_i \cdot PPBW_j \cdot \rho \right) \left(\frac{n^j_T - n^j_i}{n^j_T - 1} \right) \] (4)

\[BW_{Local}^j = \text{depends on partitioning} \] (5)
Job Co-allocation Model

BW Needed

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Job 1

Job 2

Job 3

BW Alloted

Allotment Algorithm

\[BW_{sat} = \sum_{j \in J_i} BW^j_i / BW^{max}_i \]

\[BW_{sd}(k,j) = BW_{allotted}^{(k,j)} / BW^j_k \]
Bandwidth Allotment Algorithm

\[BW_{i}^{uc_sat} = \frac{\sum_{\forall j \in J_{uc}} BW_{alloted}^{(i,j)}}{BW_{i}^{avail}} \]

Step 1: Initialization - For every job \(j \), let \(BW_{alloted}^{(i,j)} = BW_{j}^{i} \). For every link \(i \), let \(BW_{i}^{avail} = BW_{i}^{max} \). Let the unconstrained set of nodes, \(J_{uc} = J \) (set of all jobs). Let the set, \(J_{i} \) be the set of all jobs that span link \(i \).

Step 2: Saturation detection - For every link, calculate \(BW_{i}^{uc_sat} \). While there exists at least one \(BW_{i}^{uc_sat} > 1.0 \), continue, else goto Step 5.

Step 3: Saturation correction - Identify the link with the largest \(BW_{i}^{uc_sat} \) (most saturated link) from Step 2, and globally reduce the allotted bandwidth of every job in \(J_{i} \cap J_{uc} \) by a factor of \(BW_{i}^{sat} \).

Step 4: Update state - Remove each of the modified jobs from the set \(J_{uc} \). For each of the modified jobs, remove their allotted bandwidth from the available bandwidth, \(BW_{i}^{avail} \) on each link over which they span. Goto Step 2.

Step 5: Termination - DONE.
Co-allocation Model Continued

- State changing events
 - New co-allc’ed job
 - Co-allc’ed job finishes
- Residual execution times

Residual Execution Time

\[T_R^{TE} = \sqrt{T_C^R + T_P^R} \]

Residual Communication Time

\[T_C^R = (T_C^{R'} - T_C^\Delta)(BW^{sd'}_{(k,j)})(BW^{sd}_{(k,j)})^{-1} \]

Residual Computation Time

\[T_P^R = \sqrt{T_P^{R'} - T_P^\Delta} \]

\[T_P^\Delta = \frac{\Delta T}{T_E} T_P^{R'} \quad \text{and} \quad T_C^\Delta = \frac{\Delta T}{T_E} T_C^{R'} \]
Upper and Lower 'Bounds' for Com-
parison

No Sharing

Migration

Ideal

"There Is No Grid"

"No Shared BW"

"One Big Cluster"
Initial Results – Naive

Turnaround Time vs Bisection Bandwidth (2 Clusters)

- Initial Strategy
- No Share
- Ideal
- Migration Only

Turnaround Time vs Bisection Bandwidth (8 Clusters)

- Initial Strategy
- No Share
- Ideal
- Migration Only

Effects become exacerbated as the number of clusters is increased
Max BW Due to 2D Mesh

Max EC_L = 2 \cdot \left(\min\left(\lceil\sqrt{n_T}\rceil, N A_i\right) + 1\right) \quad (6)

Max BW_L^i = Max EC_L \cdot \left(\frac{BW_L}{Deg_L}\right) \quad (7)

= 2 \cdot \left(\min\left(\lceil\sqrt{n_T}\rceil, n_i^{\text{avail}}\right) + 1\right)

\times \left(\frac{(1 - \rho) \cdot PPBW_j}{4}\right)
\[BW_i^{\text{remain}} = BW_i^{\text{avail}} - \text{Max} BW_i^L \quad (8)\]

\[n_{(1,2)} = \frac{1}{2} \left(n_T^j + \sqrt{(n_T^j)^2 - \frac{4BW_i^{\text{remain}}(N_T^j-1)}{PPBW_j}} \right)\quad (9)\]

\[S_{(i,j)}^{(1,2)} = \left([0, \lfloor n_1 \rfloor] \cup [n_2, n_T^j] \right) \cap [0, n_i^{\text{avail}}] \quad (10)\]

\[X_i^j \in S_{(i,j)}^{(1,2)}, \quad \sum_{i=1}^{N} X_i^j = n_T^j \quad (11)\]
Ensuring Fairness

- Disparate workload intensities
- Different cluster sizes
- Unfair resource sharing
- Overload remote clusters
- Worse than not participating
- Technique to control fairness
Out of order execution
- No delay to start time
- Two-tiered approach
- Backfill local jobs first
- Local backfill schedules
- Consider remote job backfill
- Constrain non-local node use
- Prevents local job starvation
Fairness, 3 Clusters (100, 100, 100) w/ Increasing Load, 1 Cluster (100) w/ Fixed Load

Job turnaround time (sec)
Arrival Rate on the first 3 clusters (Jobs/Week/Cluster)
A1 on G
A1+B on G
A1+B on FC
A1+B on OC
No Share on FC
Fairness, 3 Clusters (100, 100, 100) w/ Increasing Load, 1 Cluster (50) w/ Fixed Load

- A1 on G
- A1+B on G
- A1+B on FC
- A1+B on OC
- No Share on FC
Fairness, 3 Clusters (200, 100, 100) w/ Increasing Load, 1 Cluster (50) w/ Fixed Load

Job turnaround time (sec)
Arrival Rate on the first 3 clusters (Jobs/Week/Cluster)

A1 on G
A1+B on G
A1+B on FC
A1+B on OC
No Share on FC
Conclusions

- Job co-allocation can improve system performance
- Access to job characteristics and link utilizations are necessary
- Control network contention and manage bandwidth as a resource
- Performance highly sensitive to salient workload characteristics
- Traditional backfilling effectively prevents unfairness
Future Work

 pobl

- Add model for data staging during migration and co-allocation
- Add model for job checkpointing to recover from bad decisions
- Modify job model to reflect phases of comm. & comp.
- Refine network model to include more general topologies
- Refine slowdown model to address effects due to NW protocols
Scholarly Contributions

- **Publications**
 - Intl. Workshop on Scheduling and Resource Management for Parallel and Distributed Systems, *submitted 2006*
 - Intl. Conference on Parallel and Distributed Systems, *submitted 2006*
 - Special Issue of Journal of Supercomputing, 2005
 - Intl. Conference on Cluster Computing, 2004
 - Intl. Parallel and Distributed Processing Symposium, 2004

- **Poster Sessions**
 - NASA booth at Supercomputing Conference, 2004
 - NSF site visits for CAEFF, 2003, 2004
Dynamic Model Comparison

- 100 nodes per cluster
- 1Gbps intercluster network links
- Size = $UNIF[10, 90]$
- All GLOBAL no LOCAL communication
- 70% comp. / 30% comm.
- Poisson AP 150 interarrival time average
- All jobs in same simulation have same BSBW
- Varying PPBW
- Initial execution time, EXP w/ average 225
- 4,000,000 jobs run per simulation
Dynamic Model 2 Clusters

Turnaround Time vs Bisection Bandwidth (2 Clusters)

Turnaround Time vs Co-allocation Penalty (2 Clusters)
Dynamic Model 4 Clusters

Turnaround Time vs Bisection Bandwidth (4 Clusters)

Turnaround Time vs Co-allocation Penalty (4 Clusters)
Dynamic Model 8 Clusters

Turnaround Time vs Bisection Bandwidth (8 Clusters)

Turnaround Time vs Co-allocation Penalty (8 Clusters)
Baseline Performance

- Good performance
- Potentially unrealistic
- No a priori knowledge?
- More meaningful

![Graph showing Turnaround Time vs Bisection Bandwidth (4 Clusters)]
Co-allocation Algorithms

- A1 – Constraint Satisfaction
- B1 – Largest Free Nodes First
- B2 – Least Saturated Link First
- B3 – Big-small Chunking
- B4 – Load-balancing

Bandwidth-Aware Co-allocation

Scheduler
Sat. Level > LSLT ?
Experimental Setup

- Synthetic workload
- Poisson AP 150 IAT
- Exp. ST (initially) 225 avg.
- 70% comp. / 30% comm.
- 1 Gbps IC network links
- 400,000 jobs, $UNIF[10, 50]$
- 100 nodes per cluster
CS Baseline Case (A1) vs Largest Free Nodes First (B1)
Algorithm Comparison with LSLT fixed at: 100%

- A1 Algorithm (Satisfy)
- B1 Algorithm (Largest free)
- B2 Algorithm (Least sat. link)
- B3 Algorithm (Chunking) (85%)
- B4 Algorithm (Load-balance)
- Ideal
- Migration Only

Job turnaround time (sec) vs. Bisection bandwidth (Mbps)
Algorithm Comparison at Low Job BSBW

- A1 Algorithm (Satisfy)
- B1 Algorithm (Largest free)
- B2 Algorithm (Least sat. link)
- B3 Algorithm (Chunking) (85%)
- B4 Algorithm (Load-balance)
- Ideal
- Migration Only
Algorithm Comparison at High Job BSBW

A1 Algorithm (Satisfy)
B1 Algorithm (Largest free)
B2 Algorithm (Least sat. link)
B3 Algorithm (Chunking) (85%)
B4 Algorithm (Load-balance)
Ideal
Migration Only
Algorithm Comparison with LSLT fixed at: 100%

- A1 Algorithm (Satisfy)
- B1 Algorithm (Largest free)
- B2 Algorithm (Least sat. link)
- B3 Algorithm (Chunking) (85%)
- B4 Algorithm (Load-balance)
- Ideal
- Migration Only
Chunking Algorithm Comparison with LSLT fixed at: 100%

- A1 Algorithm (Satisfy)
- B3 Algorithm (Chunking) (70%)
- B3 Algorithm (Chunking) (80%)
- B3 Algorithm (Chunking) (85%)
- B3 Algorithm (Chunking) (90%)
- Ideal
- Migration Only
Chunking Algorithm Comparison at Low Job BSBW

- A1 Algorithm (Satisfy)
- B3 Algorithm (Chunking) (70%)
- B3 Algorithm (Chunking) (80%)
- B3 Algorithm (Chunking) (85%)
- B3 Algorithm (Chunking) (90%)

Ideal
Migration Only
Chunking Algorithm Comparison at High Job BSBW

- A1 Algorithm (Satisfy)
- B3 Algorithm (Chunking) (70%)
- B3 Algorithm (Chunking) (80%)
- B3 Algorithm (Chunking) (85%)
- B3 Algorithm (Chunking) (90%)

Job turnaround time (sec)

- Ideal
- Migration Only

LSLT (%)
Response to Comm. Intensity

- 100 nodes per cluster
- 1Gbps intercluster network links
- Size = $UNIF[10, 50]$
- 2D and GLOBAL $\rho = UNIF[0, 1]$
- 70% comp. / 30% comm.
- Poisson AP 150 interarrival time average
- All jobs in same simulation have same PPBW
- Varying BSBW
- Initial execution time, EXP w/ average 225
- 400,000 jobs run per simulation
Information Availability

- Jobs expose info. randomly at rate x%
- 100 nodes per cluster
- 1Gbps intercluster network links
- Size = $UNIF[10, 50]$
- 2D and GLOBAL $\rho = UNIF[0, 1]$
- 70% comp. / 30% comm.
- Poisson AP 150 interarrival time average
- $PPBW = UNIF[0, 300]$
- Initial execution time, EXP w/ average 225
- 400,000 jobs run per simulation
Empirical Verification

Slowdown Effect on Job Execution Time and Link Utilizations

- Observed Time
- Observed Link Util.
- Predicted Time (model 1)
- Predicted Time (model 2)
- Predicted Link Util.
- BW Needed (Mbps)
Expand Job & NW Models