SYLLABUS

ECE 493: Introduction to Parallel Systems 3(3,0)
Section 1 - Fall Semester, 2004

Goals:
Understand how to program with MPI
Understand important numerical and non-numberical algorithms
Introduce performance analysis concepts

Instructor: Walt Ligon, 656-1224, 300-D Riggs Hall,
walt@clemson.edu

Office Hours: MW 3:45 to 5:30 or by appointment

Required Text: Parallel Programming in C with MPI and OpenMP
By: Michael J. Quinn,

Grading:
Mid-Term Exam: 20%
2nd Exam: 20%
Assignments and Projects: 40%
Final Exam: 20%

Attendance:
Attendance is required
No late work accepted.
Make-up tests by prior appointment only.
Wait 15 minutes for late instructor.

Academic Honesty:
All work on quizzes, tests, exams, design assignments, projects,
and labs is to be wholly your own. Possessing, using, providing, or
exchanging improperly acquired written, verbal, or electronic
information will be considered a violation of the academic honor
code. Violations will result in a grade of F for the semester.
Study Guide 1

Parallel Computing
Goal: speeding up computation
Interesting problems communicate
Ways to communicate
shared memory
message passing

Message Passing
send/receive data
issues
synchronization
blocking/non-blocking
synchronous
asynchronous
buffering
none
limited
infinite
explicit
naming
direct/indirect
symbolic
symmetric/asymmetric
data size and type
collective communication

MPI
basic calls
 Init, Comm_rank, Comm_size, Send, Recv, Finalize
communicators, size ranks
basic data types
tags
semantics
 non-overtaking
 progress
 no fairness
 limited resources
Sendrecv, Sendrecv_replace
IO models
 master task
 independent
 hybrid
 parallel IO
collective operations
 Barrier, Bcast, Reduce, Allreduce, Scatter, Gather, Allgather, Alltoall, Reduce_scatter,
 Scatterv, Gatherv, Allgatherv, Alltoallv, Scan
modes
 normal
 buffered
 synchronous
 ready
non-blocking IO
 Isend, Issend, Ibsend, Irsend, Irecv
 Test, Wait, Testany, Waitany, Testall, Waitall, Testsome, Waitsome
MPI (cont)

dervied (user-defined) datatypes
- Type_contiguous, Type_vector, Type_hvector, Type_indexed, Type_hindexed,
 Type_struct
- Type_commit, Type_free, Type_size, Type_extent

groups
- What are they and why do we have them?
 Group_incl, Group_excl, Group_rank, Group_size

communicators
- What are they and why do we need them?
 Comm_create, Comm_group, Comm_split

topologies
- What are they and how do they help programmers?
 Cart_create, Cart_coords, Cart_rank, Cart_shift

Parallel Program Design

Foster's methodology
- partitioning
- communication
- agglomeration
- mapping

Decomposition
- data
 for 2D structures:
 by row, by column, checkerboard
 interleaved
 block

functional

Performance Analysis

serial and parallel runtime
- speedup
- Amdahl's Law
- efficiency
 isoefficiency
 Overhead function
 Scalability function